

Luminor Web Service
specification
Version 1.0.2

This document defines how a file (e.g. a payment file) which will be sent to the bank is digitally

signed by the content owner. It also describes how a file received from the bank is digitally

signed by Luminor. Digital signature is used for authentication and integrity control of the file.

This model is used in Luminor File Transfer solution.

1

Contents

1. Introduction ... 2

2. Background .. 2

3. Requirements ... 2

4. The Secure Envelope structure and elements used .. 2

4.1 ApplicationRequest ... 3

4.2 ApplicationResponse ... 3

5. Security ... 3

5.1 XML Digital signature .. 3

5.2 Type of digital signature .. 3

5.3 Download of Signer ID certificate .. 4

6 The file transfer process .. 4

6.1 Sending a file to bank .. 4

6.2 Receiving a file from bank ... 5

7. Service providers .. 6

A 3rd party acting on behalf of the End-Customer ... 6

8.Vocabulary and abbreviations used ... 6

Appendix A Web Service Error codes.. 8

Appendix B File types for Web Service .. 9

Appendix C Web Service Endpoints .. 10

Production ... 10

Sandbox .. 10

Appendix D ApplicationRequest .. 11

Elements in ApplicationServiceRequest .. 12

Appendix E ApplicationResponse .. 15

File Descriptor ... 16

Elements in ApplicationServiceResponse ... 17

Elements in Elements in FileDescriptor ... 18

List of returned errors .. 19

Version Date Description of changes

Version 1.0 May 20, 2020 Document published

Version 1.0.1 June 16, 2020 Endpoints update

Version 1.0.2 September 23, 2021 Added the list of returned errors

2

1. Introduction

Luminor Web Service is used for exchanging files and messages via a network. Luminor Web

Service is for corporate customers is called shortly WS. It will be the entry point for Baltic

customers and will support various file transfer protocols and different file formats, including

XML SEPA payments in the ISO20022 standard.

This specification describes how to protect file content using a digitally signed Secure Envelope,

which is transported over different available communication protocols. All files exchanged

through WS are digitally signed according to the specification in this document independent of

the channel/protocol used.

This specification of securing the file content will not change or alter the security in any of the

communication channels.

2. Background

Files which are to be exchanged with a bank are in a specified file format and layout according

to the requested service (e.g. payments). Normally the file format specification does not include

security elements. To enable end-to-end security of a file, Luminor introduces a content

signature model called Secure Envelope which is described in this document. With the Secure

Envelope, security will be part of the content, i.e. related to the content owner instead of the

communication channel owner.

The new security model is based on PKI and XML digital signature technologies, which both are

global standards. The XML structure, called Secure Envelope, is described in following

chapters. Any file, whether it is XML, ASCII or binary, can be transported by using the Secure

Envelope. Once the customer has added his/her digital signature to the Secure Envelope and

thereby to the file, the file can be securely transported via any channel/protocol to Luminor.

3. Requirements

The sending of digitally signed files requires:

• Software which creates the Secure Envelope according to this specification

• Software to create a digital signature for the Secure Envelope

• File content (i.e. the payment file)

• PKI keys, i.e. the certificate. The certificate can be obtained via certificate web service

call provided by from Luminor.

4. The Secure Envelope structure and elements used

The Secure Envelope described here is an XML structure following a public schema. The

Secure envelope contains the file to be sent and is digitally signed. The schema is based on an

open specification and used in other contexts as well. The Secure Envelope is part of an open

specification for Web Services, publicly available via Bankers’ Association in Finland.

The schema contains several elements, some mandatory and some optional. Luminor requires

information for some optional elements, like Command and Signature.

The rule is that one Secure Envelope is present for each physical file (the payload). In case files

are compressed, these files still form one physical file of the same file type. The customer

signature authorisation is then connected to that file, type of file and service.

3

4.1 ApplicationRequest

When sending a file to the bank, the Secure Envelope uses a schema called

ApplicationRequest.

It will use following namespaces from:

https://www.w3.org/2001/XMLSchema

https://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

Some of elements in the schema are not used by Luminor FTC and thus not shown.

The elements used when uploading a file to a bank are marked with (M) if they are mandatory

for Luminor, even if they are not a mandatory in the schema. Elements used should not be left

empty.

ApplicationRequest Schema and elements used is shown in Appendix D.

4.2 ApplicationResponse

When receiving a file from the bank the Secure Envelope uses a schema called

ApplicationResponse.

ApplicationResponse schema is always used when files are transported from Bank to Customer.

It enables XML digital signature to any file type.

The payload file is inserted into the element called Content. The payload file is base64 coded to

make it independent of the ApplicationResponse schema. It has some supporting elements for

information purposes, like returned CustomerID, Timestamp, ResponseCode, Compression etc.

Application response is used to enable file integrity and to validate that the message is received

from the correct party.

ApplicationResponse Schema is shown in Appendix E.

5. Security

5.1 XML Digital signature

XML Digital Signature must be added to the Secure Envelope for all files sent to or received

from Luminor FTC.

5.2 Type of digital signature

XMLDsig is of type Enveloped, i.e. it signs the whole XML structure (ApplicationRequest or

ApplicationResponse). It is specified by W3C.

The signature must contain the following elements with associated child elements: SignedInfo,

SignatureValue and KeyInfo. KeyInfo should contain X509Data as well as the child element

X509Certificate, including the customer’s public key of the signing certificate.

See more information from:

https://www.w3.org/TR/xmldsig-core/

https://en.wikipedia.org/wiki/XML_Signature

https://www.w3.org/2001/XMLSchema
https://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmldsig-core/
https://en.wikipedia.org/wiki/XML_Signature
https://en.wikipedia.org/wiki/XML_Signature

4

5.3 Download of Signer ID certificate

The Signer ID certificate must be downloaded by using web service request to certificate

service.

Certificate service endpoint and WSDL are defined in Appendix C

6 The file transfer process

6.1 Sending a file to bank

The file transfer process can be divided in different parts. The three main ones are:

1. Creating the file content to be sent e.g. pain.001 XML payment

2. Locking the file, i.e. signing the file content with XML digital signature, using the content

signing security key

3. Moving the signed file to the communication software, which connects to a bank server

and transports the signed file into Luminor using a file communication protocol security

solution and key(s).

Depending on the infrastructure and legacy solutions in the company, the steps above can be

carried out in different systems or using just one solution.

The first step: The file content is usually created in a corporate legacy and the file type must

follow the specifications of the requested service (i.e. a message implementation guideline).

Step nr 2 is described below:

After creation of the payload file, a Secure Envelope following the ApplicationRequest schema is

created, according to the instructions in Appendix D.

The payload will be entered in the element called ‘Content’ of type base64Binary.

All needed elements must have specified values according to Appendix D. After that the Secure

Envelope with payload can be locked, i.e. digitally signed by using customer content signing PKI

key. Once it is locked the payload is protected against any changes from the moment of signing,

until it is received by Luminor FTC File Transfer. This is called integrity control.

The signature also uniquely defines the signing party of the payload, i.e. the content owner.

Authentication of the customer is based on the content signature.

The signed Secure Envelope can be now sent to Luminor by supported file transfer protocol.

Banking software is used to initiate a secure communication, using customer specific

communication security key(s) received from Luminor. The content signing key is always a PKI

key.

See Figure 4 below, which describes the steps in creating a payload file and a Secure Envelope,

signing the Secure Envelope and sending it by any communication protocol to Luminor.

5

Figure1

Normally a legacy system at the bank which received the file from the customer will send the

customer a status message. A status message file may indicate that a sent file has been

received by the bank, state the result after validation of the payload, etc. There may be multiple

status messages created during the legacy process. See chapter 6.2.

6.2 Receiving a file from bank

Files from the bank are made available for customer to retrieve them (push-pull protocol).

The receiving of a file from Luminor is also based on a Secure Envelope, following

ApplicationResponse schema. The signer in this case is Luminor and the receiver has a

possibility to authenticate the real content signer by verifying the signature validity. Luminor

provides the CA keys needed for this verification.

The signature ensures that the payload content created by Luminor is not changed by anyone.

Any, even the smallest change of the content, would invalidate the signature. If so, happens

there is an additional channel/protocol independent integrity and authentication control

mechanism for the customer. However, the ApplicationResponse schema is different from the

ApplicationRequest schema (see Appendix E).

The receiver of the Secure Envelope should first verify the signature, and then look into the

elements in the Secure Envelope. If the response contains a (requested) payload, it may be

compressed following the values in the respective elements.

The response file may also contain an error message, in which case the ResponseCode

element in the Secure Envelope contains a value other than zero. The different error messages

based on values are described in Appendix A.

The actual payload file can be extracted from the Secure Envelope by carrying out base64

decoding to the file in the Content element

6

Luminor Web service provides following services:

• uploadFile - upload single file

• downloadFileList - get a list of files to download, file reference collection

• downloadFile - download a single file by file reference

• deleteFile

• getUserInfo - get file types which are accessible to the user

Each service implements ApplicationRequest call and provides ApplicationResponse result

described by XSDs.

7. Service providers

A 3rd party acting on behalf of the End-Customer

A company or an entrepreneur may outsource the handling of cash management payables and

receivables to a so-called third party. The 3rd party is thus acting on behalf of the endcustomer.

An example of this is a book-keeping agency which manages several customers’

payables/receivables.

Another example could be a company with a “payment factory”, where one legal unit manages

payables and receivables on behalf of other units in the same company.

If a 3rd party is to create payment files using the end-customer’s debit account on behalf of the

end-customer, the end-customer must give the 3rd party power of attorney (PoA). Then the end-

customer adds the Signer ID of the 3rd party to the service agreement. The PoA must be

registered and be available at Luminor.

When the 3rd party sends a payment file, the signature in the Secure Envelope belongs to 3rd

party, but the debit account in payment file may belong to end-customer. The authorization to

use the debit account is verified before execution of the payment transactions, and a valid PoA

must exist. If the PoA will be cancelled, it must be registered in Luminor, respectively.

When a 3rd party is sending files to Luminor, they must have an agreement with Luminor for file

transfer. By that they will receive their own Sender ID and one or several Sign ID’s/Certificates.

If they will use any of the services, like payment services for their own purposes, they will need

an agreement for that service as well.

8.Vocabulary and abbreviations used

CustomerID

Identifier provided by Luminor (“Sender ID”) to

identify a sender/customer in a file communication

agreement

Signature A digital signature signing the content using a PKI

key. An authorised signer may use the signature to

pre-confirm payments. Also, signing the SOAP

envelope in Web Services.

Signer A bank customer who has an agreement and

authorisation to create a digital signature for the

payload (e.g. a payment file), by using a customer-

specific certificate/PKI key. In the response file

Luminor is the signer.

7

Service ID Identifier provided by Luminor to identify a file

content.

File

(Content, Payload, Message)

The message, which is to be exchanged, e.g. a

Credit Transfer initiation message. It should follow

the Message Implementation Guideline (MIG)

published by Luminor. The file content is sometimes

referred to as the payload, i.e. the meaningful data

to be transported.

File type A pre-defined string entered in the Secure

Envelope, introducing the type of file in the Content

element, to be sent or retrieved to/from the specific

service in the bank.

3rd party A bank customer who has a power of attorney from

another bank customer, to act on the latter’s behalf.

An example is a book-keeping agency making

payments on behalf of another customer.

ApplicationRequest A name of a schema used for the Secure Envelope

containing the file and signature to be sent to the

bank.

ApplicationResponse A name of a schema used for the Secure Envelope

containing the file and signature to be received from

the bank.

PKI Public Key Infrastructure. A standard process for

managing asymmetric key handling in digital

signatures.

8

Appendix A Web Service Error codes

Error Code Name Remarks

00 OK

02 SOAP signature error Signature verification failed

03 SOAP signature error Certificate not valid for this ID

04 SOAP signature error Certificate not valid

05 Operation unknown

07 SenderID not found

08 SenderID locked

09 Contract locked

10 Sender ID outdated

11 Contract outdated

12 Schema validation failed XML Envelope is not valid

13 Customer ID not found

14 Customer ID locked.

15 Customer ID outdated.

16 Product contract outdated

17 Product contract locked

18 Content digital signature not valid

19 Content certificate not valid

20 Content type not valid

21 Deflate error Decompression not possible

22 Decrypt error Decryption not possible

23 Content processing error

24 Content not found

25 Content not allowed

26 Technical error

27 Cannot be deleted

29 Invalid parameters Invalid value found in

Envelope

30 Authentication failed Sender ID or Signer ID

unknown

31 Duplicate message rejected

32 Duplicate application request

rejected

9

Appendix B File types for Web Service

All file types should be supported by the receiving software and communication system.

Upload File type Options

Payment file PAIN001

Download File type Options

Feedback file PAIN002

Account

Notification

CAMT054 A Status

B Status

C Status

NEW

NEW

NEW

SubType

SubType

SubType

CAMT054

CAMT054_C

CAMT054_D

Account

statement

CAMT053

Account report CAMT052 A Status

B Status

C Status

NEW

NEW

NEW

SubType

SubType

SubType

ALL

NEW

BALANCE

SWIFT MT940 SW940

SWIFT MT941 SW941

SWIFT MT942 SW942

10

Appendix C Web Service Endpoints

Production

Soap Requests endpoints:

https://ftc.luminoropenbanking.com/v1/ft-services/CertificateService

https://ftc.luminoropenbanking.com/v1/ft-services/CorporateFileService

WSDLs:

https://ftc.luminoropenbanking.com/v1/ft-services/CertificateService.wsdl

https://ftc.luminoropenbanking.com/v1/ft-services/CorporateFileService.wsdl

Sandbox

Sandbox Soap Requests endpoints:

https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CertificateService

https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CorporateFileService

Sandbox WSDLs:

https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CertificateService.wsdl

https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CorporateFileService.wsdl

https://ftc.luminoropenbanking.com/v1/ft-services/CertificateService
https://ftc.luminoropenbanking.com/v1/ft-services/CorporateFileService
https://ftc.luminoropenbanking.com/v1/ft-services/CertificateService.wsdl
https://ftc.luminoropenbanking.com/v1/ft-services/CorporateFileService.wsdl
https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CertificateService
https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CorporateFileService
https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CertificateService.wsdl
https://filetransfer.developer.luminoropenbanking.com/v1/ft-services/CorporateFileService.wsdl

11

Appendix D ApplicationRequest

12

Elements in ApplicationServiceRequest

Element M/O Description

CustomerId M The content for this element is found in the file communication

customer agreement as “Sender ID”. Each agreement contains

only one Sender ID.

In some special cases, when the signer of the content uses

another party for transporting the signed file, this field contains

the Sender ID of the other party.

Command M The command is dependent on the case used.

• UploadFile, when sending a file to the bank

• DownloadFile, when getting file from

• DownloadFileList, to obtain downloadable content list

by criteria set by either StartDate, EndDate, Status,

ServiceId

• getUserInfo, when get information on file types which

are accessible to the user

Timestamp M Creation time of the ApplicationRequest Secure Envelope.

UTC or local time.

Valid values Current date -7 days, +1 day

StartDate O Date Filtering criteria in DownloadFileList Operation

EndDate O Date Filtering criteria in DownloadFileList operation

Status M Content Filtering criteria in DownloadFileList operation

One of the following codes are possible to use: NEW, DLD,

ALL

ServiceId O Filtering criteria in DownloadFileList operation, for those file

types that has Service ID in use

Environment M Must be “PRODUCTION”

FileReferences Mandatory in DownloadFile request

Unique identification of the file which is the target of operation

Obtained with downloadlist operation

TargetId M The content for this element is found in the File Communication

Customer Agreement as “Signer ID”. Each agreement may

contain several Signer ID’s. Each Signer ID is connected to a

certain content signing certificate.

The Signer ID authenticates the identity and the authorization

to the content or file type according to the agreement. This

element is mandatory in all operations. There can be only one

Signer ID in a SecureEnvelope

13

ExecutionSerial O The content for this element is found in the File Communication

Customer Agreement as “Signer ID”. Each agreement may

contain several Signer ID’s.

Each Signer ID is connected to a certain content signing

certificate.

 The Signer ID authenticates the identity and the authorization

to the content or file type according to the agreement. This

element is mandatory in all operations. There can be only one

Signer ID in a SecureEnvelope ‘\’

Encryption O “false”

EncryptionMethod O Not used

Compression O “false” or “true”

The value indicates if the uploaded content is compressed or

not

If set to true, then the compression method element must also

have a value. Files are to be compressed before possible

encryption and before base64 coding.

It is recommended to compress files bigger than 1 MB. Files

from bank that are bigger than 1 MB will always be

compressed.

Files which original size is bigger than 10 MB should sent

always in compressed form

In the DownloadFile operation the field can be used for request

compression

CompressionMethod O If compression is set to “true” the value in CompressionMethod

is “GZIP”. It means that the Compression algorithm is

RFC1952 GZIP

SoftwareId M Contains the name and version of the client-side software

which generated the ApplicationRequest Secure Envelope.

FileType M Specifies uniquely the type of file in the request. Available file

types are specified in Appendix B

Content M The actual file in the UploadFile operation. The content is in

Base64 format.

Specifies uniquely the type of file in the request. Available file

types are specified in Appendix B

14

Signature M This element is created by the signature operation by the

customer. Signature content is specified by the XML Digital

Signature standard.

This element is mandatory when sending any request to the

bank as it is used for integrity verification and authentication.

This element is defined as optional in the schema because the

recipient can remove the signature element after verification of

the signature, before schema

15

Appendix E ApplicationResponse

16

File Descriptor

17

Elements in ApplicationServiceResponse

Element M/O Description

CustomerId M The content for this element is found in the file communication

customer agreement as “Sender ID”. Each agreement contains

only one Sender ID.

In some special cases, when the signer of the content uses

another party for transporting the signed file, this field contains

the Sender ID of the other party.

Timestamp M Creation time of the ApplicationRequest Secure Envelope.

UTC or local time.

Valid values Current date -7 days, +1 day

ResponseCode M The content of this field is 0, if, no error appeared, otherwise

the specific error code is presented describing the error as

defined in Appendix A.

ResponseText O „OK” if no error , otherwise the error description according to

Appendix A.

ExecutionSerial O An identifier given by the customer is returned in response.

Otherwise 0 (zero)

One of the following codes are possible to use: NEW, DLD,

ALL

Encryption O “false”

EncryptionMethod O Not used

Compression O “false” or “true”

The value indicates if the uploaded content is compressed or

not

If set to true, then the compression method element must also

have a value. Files are to be compressed before possible

encryption and before base64 coding.

It is recommended to compress files bigger than 1 MB. Files

from bank that are bigger than 1 MB will always be

compressed.

In the DownloadFile operation the field can be used for request

compression

CompressionMethod O If compression is set to “true” the value in CompressionMethod

is “GZIP”. It means that the Compression algorithm is

RFC1952 GZIP

18

FileDescriptors M Collection of FileDescriptors

See single FileDescriptor element in appendix D

Will be present in response for DownloadFileList

FileType M Specifies uniquely the type of file in the request. Available file

types are specified in Appendix B

Content M
The actual file content of the operation. The content is in

Base64 format

 Specifies uniquely the type of file in the request. Available file

types are specified in Appendix B

Signature M This element is created by the signature operation by the

customer. Signature content is specified by the XML Digital

Signature standard.

This element is mandatory when sending any request to the

bank as it is used for integrity verification and authentication.

This element is defined as optional in the schema because the

recipient can remove the signature element after verification of

the signature, before schema

Elements in Elements in FileDescriptor

Element M/O Description

FileReference M Example: 00001500922006030316603001006827

TargetId M Example: 0012345678

FileType M Example Payments feedback: PAIN002

List of file types available can be found from Appendix B

FileTimestamp M Example: 2006-03-03T00:00:00.0Z

Status M Example: NEW or DLD

19

List of returned errors

Error
code

Error string Message

4
SOAP_SIGNATURE_ERROR_CERTIFICATE_

NOT_VALID
Signature certificate not valid

40001
SOAP_SIGNATURE_ERROR_CERTIFICATE_

FAILED
Signature validation failed

5 OPERATION_UNKNOWN Account not found = <account>

6 OPERATION_IS_RESTRICTED
Operation is not available for supplied

credentials

6001 OPERATION_IS_DISABLED File deletion disabled (Customer endpoint)

6001 OPERATION_IS_DISABLED File deletion disabled (FTC endpoint)

7 SENDER_ID_NOT_FOUND
Sender ids should be integer numbers, got:

<senderId>

13 CUSTOMER_ID_NOT_FOUND
Customer ids should be integer numbers, got:

<customerId>

18
CONTENT_DIGITAL_SIGNATURE_NOT_VALI

D
Signature validation failed

18
CONTENT_DIGITAL_SIGNATURE_NOT_VALI

D
Digital signature validation failed

19 CONTENT_CERTIFICATE_NOT_VALID Signature certificate not valid

19001 CONTENT_CERTIFICATE_DUPLICATED
Unexpected error, attempted to revoke multiple

certificates, serial serialNumber

20 CONTENT_TYPE_NOT_VALID Cannot process file type <filetype>

230001
CONTENT_PROCESSING_ACCOUNT_ERRO

R

Account Services Reference not present!

<AcctSvcrRef> is missing

230002 CONTENT_PROCESSING_UNZIP_ERROR Cannot unzip gzip file

230003 CONTENT_PROCESSING_BAFII_ERROR

Serializing

BranchAndFinancialInstitutionIdentification4

failed

230004 CONTENT_PROCESSING_CB_ERROR Serializing CashBalance3 failed

230005 CONTENT_PROCESSING_OI_ERROR Serializing OriginalGroupInformation20 failed

230006 CONTENT_PROCESSING_OPI_ERROR Serializing OriginalPaymentInformation1 failed

230007 CONTENT_PROCESSING_PI_ERROR Serializing PartyIdentification32 failed

230008 CONTENT_PROCESSING_PF_ERROR Serializing PropertyFile failed

230009 CONTENT_PROCESSING_RE_ERROR Serializing Report2Entry failed

230010 CONTENT_PROCESSING_JAXB_ERROR {many possible messages}

230011
CONTENT_PROCESSING_GZIP_METHOD_E

RROR

Unsupported compression method -

<compressionMethod>

230012
CONTENT_PROCESSING_SAX_CONFIG_ER

ROR
Unable to SAX parse

230013 CONTENT_PROCESSING_SAX_ERROR SAX parse error

230014
CONTENT_PROCESSING_ASIC_INVALID_E

RROR
asic-e container invalid

230015
CONTENT_PROCESSING_ASIC_SUBJECT_

ERROR
asic-e signature subject is invalid

230016
CONTENT_PROCESSING_ASIC_SIGN_COU

NT_ERROR
<signaturesSize> signatures in asic-e container

230017
CONTENT_PROCESSING_ASIC_FILE_COUN

T_ERROR
<dataFilesSize> files in asic-e container

230018 CONTENT_PROCESSING_REP_ID_ERROR Report ID is missing

230019
CONTENT_PROCESSING_REP_ACC_ERRO

R
Report Account is missing

230020
CONTENT_PROCESSING_REP_ACC_ID_ER

ROR
Report Account ID is missing

230021 CONTENT_PROCESSING_PKCS_ERROR unexpected pkcs10 subject: + subject

230026
CONTENT_PROCESSING_SECRET_VALUE_

ERROR
Error processing secret value

20

230027 CONTENT_PROCESSING_BIC_ERROR Document is missing mandatory BIC field

230028 CONTENT_PROCESSING_CCY_ERROR
Document is missing mandatory Ccy attribute

in <InstdAmt> tag

230029
CONTENT_PROCESSING_XML_PARSE_ER

ROR
Could not parse application request xml

26 TECHNICAL_ERROR Handling request failed

260001 TECHNICAL_ARCHIVE_ERROR Archived UploadFileLog not found by ID = <id>

260002 TECHNICAL_MISSING_FILE_ERROR File not found by messageId = <messageId>

260003 TECHNICAL_MT_FILE_ERROR Failed to parse MT file

260004 TECHNICAL_CERT_ERROR Failed to serialize application response

260005 TECHNICAL_CERT_SER_ERROR Failed to serialize cert application response

260006 TECHNICAL_JAXB_SER_ERROR Failed to serialize jaxbElement

260007 TECHNICAL_MAP_OTJ_ERROR Failed to write object into json

260008 TECHNICAL_MAP_JTO_ERROR Failed to write json into object

260009 TECHNICAL_MAP_OTP_ERROR Failed to write object into json

260010 TECHNICAL_CERT_FORMAT_ERROR Formatting X509Certificate failed

260011 TECHNICAL_MAP_TO_LIST_ERROR Mapping ResultSet to List failed

260012 TECHNICAL_MAP_TO_OPTIONAL_ERROR Mapping ResultSet to Optional failed

260013 TECHNICAL_IS_TRUE_ERROR <value> is not true

260014 TECHNICAL_NOT_NULL_ERROR <value> is null

260015 TECHNICAL_FILE_ERROR Unknown file

260016 TECHNICAL_CERT_REVOKE_ERROR Valid certificate to revoke not found

260017 TECHNICAL_JSON_PARSE_ERROR Message with error in JSON

260018 TECHNICAL_CUST_EXIST_ERROR
Customer with customerId = <t24CustomerId>

already exist

260019 TECHNICAL_ORGANIZATION_ERROR Invalid organization data: <organization>

260020 TECHNICAL_NO_ACCOUNT_ERROR
Customer with customerId = <customerId> has

no accounts

260021 TECHNICAL_ACCOUNT_ERROR
Customer with customerId = <customerId> has

invalid account data <account>

260022 TECHNICAL_FILE_TYPE_ERROR Unknown file type (<fileTypeCode>)

260023 TECHNICAL_BIC_ERROR

Cannot transform source bic <bic> to correct

BIC for customer ID <customerId> and country

<country>

260023 TECHNICAL_NO_FILE_ERROR
File not found by message id = <messageId>,

fileType = <filetype>

260026 TECHNICAL_CERT_USER_ERROR
Soap message and application request

signature certificates belong to different users

260027 TECHNICAL_AGREEMENT_STATUS_ERROR Wrong status

260028
TECHNICAL_AGREEMENT_NUMBER_ERRO

R

Agreement not found by agreement number =

<agreementNumber>

260029 TECHNICAL_AGREEMENT_ID_ERROR
Agreement not found by agreement id =

<agreementId>

260030 TECHNICAL_BALANCE_ERROR Failed to parse balance

260031 TECHNICAL_PAYMENT_ERROR Failed to parse original payment information

260032 TECHNICAL_GROUP_INFO_ERROR Failed to parse original group information

260033 TECHNICAL_SERVICER_ERROR Failed to parse servicer

260034 TECHNICAL_DOC52_PARSE_ERROR Failed to parse document

260035 TECHNICAL_DOC53_PARSE_ERROR Failed to parse document

260036 TECHNICAL_OWNER_PARSE_ERROR Failed to parse owner

260037 TECHNICAL_REPORT_ENTRY_ERROR Failed to parse report entry

260038 TECHNICAL_DATETIME_PARSE_ERROR Failed to parse xml dateTime: <dateTime>

260039 TECHNICAL_REPORT_TYPE_ERROR Unknown report type - <type>

260040
TECHNICAL_UNMARSHAL_SCHEMA_ERRO

R
Unmarshal create schema error

260041 TECHNICAL_UNKNOWN_STATUS_ERROR Unknown status - <currentStatus>

21

260042 TECHNICAL_KEY_ALIAS_ERROR key by alias not found

260043 TECHNICAL_FORMAT_CERT_ERROR Certificate formatting failed

260044 TECHNICAL_PARSE_PKCS_ERROR
request user doesn't match cert user. Tech

userId=<technicalUserId>

260045 TECHNICAL_CTRLSUM_ERROR
CtrlSum and transaction total sums can not be

different

260046 TECHNICAL_NBOFTXS_ERROR
NbOfTxs and transaction count can not be

different

260047 TECHNICAL_FILE_DIRECTION_ERROR
Unknown file type (<fileTypeCode>) and

direction (<direction>) combination

260048 TECHNICAL_REQUEST_LOG_ERROR
RequestLog not found by requestId =

<requestId>

27 CANNOT_BE_DELETED

You cannot remove main Customer (id =

<customerId>) for Agreement (id =

<agreementId>)

29 INVALID_PARAMETERS
A problem has occurred with reading pkcs#10

csr

290001 INVALID_NO_COUNTRY_PARAMETERS Country is not specified in the subject

290002
INVALID_NO_CUSTOMER_NAME_PARAMET

ERS
Customer name is not specified in the subject

290003 INVALID_NO_USER_ID_PARAMETERS User id is not specified in the subject

290004 INVALID_COUNTRY_PARAMETERS
PKCS10 csr subject country is <subject>, but

the agreement is for <country>

290005 INVALID_CUSTOMER_NAME_PARAMETERS

PKCS10 csr subject customer name is

<customerName>, but the agreement is for

<customerMainName>

290006 INVALID_USER_ID_PARAMETERS
User id is <userId>, but the SERIALNUMBER

in PKCS10 csr subject is <userId>

290007 INVALID__ENV_PARAMETERS
Environment is <environment>, but the

message is for <environment>

290008 INVALID_CERT_PARAMETERS No valid certificates found

290009 INVALID_CERT_COUNT_PARAMETERS

Multiple valid certificates found, specify a

serialNumber of the certificate you want to

revoke

290010 INVALID_MESSAGE_ID_PARAMETERS MessageId is not unique

290011 INVALID_FOLDER_PARAMETERS Unknown folder - <folder> for key <key>

290012 INVALID_CERT_CONTENT_PARAMETERS Certificate content is required

290013 INVALID_ASIC_USER_PARAMETERS Technical user not found

290014 INVALID_CERT_SERIAL_PARAMETERS Serial number must be an integer

290015
INVALID_REQUEST_TARGET_ID_PARAMET

ERS
Target id is mandatory

290016
INVALID_REQUEST_ACCESS_ACC_PARAM

ETERS

User <userId> does not have access to

<accountNumber> account, <fileType> fileType

290017 INVALID_REQUEST_STATUS_PARAMETERS Not valid status = <status>

290018
INVALID_REQUEST_START_DATE_PARAME

TERS
Start date <startDate> can't be in the future

290019
INVALID_REQUEST_END_DATE_PARAMETE

RS

End date <endDate> can't be before start date

<startDate>

290020
INVALID_REQUEST_FILE_REF_PARAMETE

RS
One file reference is allowed

290021
INVALID_REQUEST_ACCESS_TARGET_PAR

AMETERS

User <id> doesn't have access to <targetId>

targetId, user's targetId is <userTargetId>

30 AUTHENTICATION_FAILED
signature certificates' user doesn't match with

application request's customerId.

33 FILE_GENERATION_FAILED Building CSV failed with error

34 S3_BUCKET_ERROR Missing bucket <configuredBucket>

35 SIGNATURE_ERROR Failed to read signature

350001 SIGNATURE_INACTIVE_ERROR Certificate is not active. id: id

350002 SIGNATURE_INVALID_ERROR Certificate is invalid. id: id

350003 SIGNATURE_INVALID_DATE_ERROR
Found certificate (id: <id>) is not valid.

<validFrom> - <now> - < validTo>

350004 SIGNATURE_RSA_ERROR
signing method algorithm uri is not RSA:

algorithm

22

350005 SIGNATURE_INVALID_MAIN_ERROR Certificate validation failed

350006 SIGNATURE_NOT_FOUND_ERROR
Certificate with fingerprint not found:

<fingerprint>

350007 SIGNATURE_NOT_MATCH_ERROR
Certificate in db doesn't match it's fingerprint.

id: <id>

350008 SIGNATURE_RSA_KEY_ERROR
certificate's key algorithm is not RSA:

<algorithm>

350009 SIGNATURE_SIGN_TAG_ERROR Could not find <Signature> XML tag

350010 SIGNATURE_SIGN_COUNT_ERROR Expected one Signature element, got length

350011 SIGNATURE_REF_XML_ERROR Could not find <Reference> XML tag

350012 SIGNATURE_REF_COUNT_ERROR
Expected one Reference in Signature, got

length

350014 SIGNATURE_CORE_INVALID_ERROR Signature is invalid

350015 SIGNATURE_USER_ERROR Active user not found by id = <userId>

350016 SIGNATURE_SOAP_COUNT_ERROR
expected one certificate in a soap request, got

<length>

350019 SIGNATURE_VALIDATE_ERROR
<Various messages about certificate signature

error>

350020 SIGNATURE_VALIDITY_ERROR
<Various messages about certificate signature

error>

